Inflammatory Mediator TAK1 Regulates Hair Follicle Morphogenesis and Anagen Induction Shown by Using Keratinocyte-Specific TAK1-Deficient Mice
نویسندگان
چکیده
Transforming growth factor-beta-activated kinase 1 (TAK1) is a member of the NF-kappaB pathway and regulates inflammatory responses. We previously showed that TAK1 also regulates keratinocyte growth, differentiation, and apoptosis. However, it is unknown whether TAK1 has any role in epithelial-mesenchymal interactions. To examine this possibility, we studied the role of TAK1 in mouse hair follicle development and cycling as an instructive model system. By comparing keratinocyte-specific TAK1-deficient mice (Map3k7(fl/fl)K5-Cre) with control mice, we found that the number of hair germs (hair follicles precursors) in Map3k7(fl/fl)K5-Cre mice was significantly reduced at E15.5, and that subsequent hair follicle morphogenesis was retarded. Next, we analyzed the role of TAK1 in the cyclic remodeling in follicles by analyzing hair cycle progression in mice with a tamoxifen-inducible keratinocyte-specific TAK1 deficiency (Map3k7(fl/fl)K14-Cre-ER(T2)). After active hair growth (anagen) was induced by depilation, TAK1 was deleted by topical tamoxifen application. This resulted in significantly retarded anagen development in TAK1-deficient mice. Deletion of TAK1 in hair follicles that were already in anagen induced premature, apoptosis-driven hair follicle regression, along with hair follicle damage. These studies provide the first evidence that the inflammatory mediator TAK1 regulates hair follicle induction and morphogenesis, and is required for anagen induction and anagen maintenance.
منابع مشابه
TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis.
Transforming growth factor beta-activated kinase 1 (TAK1) functions downstream of inflammatory cytokines to activate c-Jun N-terminal kinase (JNK) as well as NF-kappaB in several cell types. However, the functional role of TAK1 in an in vivo setting has not been determined. Here we have demonstrated that TAK1 is the major regulator of skin inflammation as well as keratinocyte death in vivo. Epi...
متن کاملTAK1 is a central mediator of NOD2 signaling in epidermal cells.
Muramyl dipeptide (MDP) is a peptidoglycan moiety derived from commensal and pathogenic bacteria, and a ligand of its intracellular sensor NOD2. Mutations in NOD2 are highly associated with Crohn disease, which is characterized by dysregulated inflammation in the intestine. However, the mechanism linking abnormality of NOD2 signaling and inflammation has yet to be elucidated. Here we show that ...
متن کاملActivation of β-Catenin Signaling in CD133-Positive Dermal Papilla Cells Drives Postnatal Hair Growth
The hair follicle dermal papilla (DP) contains a unique prominin-1/CD133-positive (CD133+) cell subpopulation, which has been shown to possess hair follicle-inducing capability. By assaying for endogenous CD133 expression and performing lineage tracing using CD133-CreERT2; ZsGreen1 reporter mice, we find that CD133 is expressed in a subpopulation of DP cells during the growth phase of the murin...
متن کاملN-WASP is a novel regulator of hair-follicle cycling that controls antiproliferative TGF{beta} pathways.
N-WASP is a cytoplasmic molecule mediating Arp2/3 nucleated actin polymerization. Mice with a keratinocyte-specific deletion of the gene encoding N-WASP showed normal interfollicular epidermis, but delayed hair-follicle morphogenesis and abnormal hair-follicle cycling, associated with cyclic alopecia and prolonged catagen and telogen phases. The delayed anagen onset correlated with an increased...
متن کاملTAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration.
TGF-β activated kinase 1 (TAK1) is a mediator of various cytokine signaling pathways. Germline deficiency of Tak1 causes multiple abnormalities, including dilated blood vessels at midgestation. However, the mechanisms by which TAK1 regulates vessel formation have not been elucidated. TAK1 binding proteins 1 and 2 (TAB1 and TAB2) are activators of TAK1, but their roles in embryonic TAK1 signalin...
متن کامل